- · 《中国循证医学杂志》栏[09/30]
- · 《中国循证医学杂志》数[09/30]
- · 《中国循证医学杂志》收[09/30]
- · 《中国循证医学杂志》投[09/30]
- · 《中国循证医学杂志》征[09/30]
- · 《中国循证医学杂志》刊[09/30]
基于双向神经网络的医学文本成分识别
作者:网站采编关键词:
摘要:针对传统机器学习模型在识别PICO(population/problem, intervention, comparison and outcome)成分时存在特征提取不充分的问题,本文提出了一种自动识别医学文本中PICO成分的GRUCM模型,该模型融合了双
针对传统机器学习模型在识别PICO(population/problem, intervention, comparison and outcome)成分时存在特征提取不充分的问题,本文提出了一种自动识别医学文本中PICO成分的GRUCM模型,该模型融合了双向门控循环单元(bi-bated recurrent unit, BiGRU)神经网络和条件随机场(conditional random field, CRF)的优点,不仅能改善传统机器学习模型存在的特征抽取不足的问题,而且可以同时抽取出多个成分,避免创建多个模型而造成的资源浪费。该模型在测试数据上P成分的F1值为88.24%,I成分的F1值为80.49%,O成分的F1值为86.62%,与采用长短期记忆网络(long short-term memory, LSTM)和CRF模型的识别效果进行对比,本文提出的GRUCM模型对PICO成分的识别更有效。
文章来源:《中国循证医学杂志》 网址: http://www.zgxzyxzz.cn/qikandaodu/2021/0418/548.html